
IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 1

Efficient Placement and Dispatch of Sensors
in a Wireless Sensor Network

You-Chiun Wang, Chun-Chi Hu, and Yu-Chee Tseng, Senior Member, IEEE

Abstract— Sensor deployment is a critical issue because it
affects the cost and detection capability of a wireless sensor
network. In this work, we consider two related deployment
problems: sensor placement and sensor dispatch. The former asks
how to place the least number of sensors in a field to achieve
sensing coverage and network connectivity, while the latter asks
how to determine from a set of mobile sensors a subset of
sensors to be moved to an area of interest with certain objective
functions such that the coverage and connectivity properties are
satisfied. This work is targeted toward planned deployment.
Our solution to the placement problem allows an arbitrary-
shaped sensing field possibly with arbitrary-shaped obstacles and
an arbitrary relationship between the communication distance
and sensing distance of sensors, and thus significant relaxes
the limitations of existing results. Our solutions to the dispatch
problem include a centralized one and a distributed one. The
centralized one is based on adopting the former placement results
and converting the problem to the maximum-weight maximum-
matching problem with the objective of minimizing the total
energy consumption to move sensors or maximizing the average
remaining energy of sensors after movement. Designed in a
similar way, the distributed one allows sensors to determine their
moving directions in an autonomous manner.

Index Terms— connectivity, coverage, deployment, mobile sen-
sors, network management, topology control, wireless sensor
networks.

I. INTRODUCTION

THE emerging wireless sensor networks provide an inexpen-
sive and powerful means to monitor the physical environ-

ment. Such a network is composed of many tiny, low-power
nodes, each consisting of actuators, sensing devices, a wireless
transceiver, and possibly a mobilizer [2]. These sensor nodes are
massively deployed in a region of interest to gather and process
environmental information. Wireless sensor networks have appli-
cations in agricultural production [5], traffic management [16],
emergency navigation [27], and surveillance [28].

How to deploy sensors is a critical issue because it affects the
cost and detection capability of a wireless sensor network. This
work investigates the sensor deployment problem. We target at
planned deployment in environments such as buildings or known
fields. We address two related problems: sensor placement and
sensor dispatch. The placement problem asks how to place the
least number of sensors in a field to achieve desired coverage
and connectivity properties [23], [26], [33], where coverage is to
guarantee that every location in the sensing field is monitored by
at least one sensor and connectivity is to ensure that there are

Manuscript received October 15, 2006; revised April 17, 2007.
Y.-C. Wang is with the Department of Computer Science, National Chiao-

Tung University, Hsin-Chu, 30010, Taiwan. E-mail: wangyc@cs.nctu.edu.tw
C.-C. Hu is with the Department of Computer Science, National Chiao-

Tung University, Hsin-Chu, 30010, Taiwan. E-mail: cchu@cs.nctu.edu.tw
Y.-C. Tseng is with the Department of Computer Science, National Chiao-

Tung University, Hsin-Chu, 30010, Taiwan. E-mail: yctseng@cs.nctu.edu.tw

sufficient routing paths between sensors. Note that coverage is
affected by sensors’ sensitivity, while connectivity is decided by
sensors’ communication ranges. The dispatch problem assumes
that sensors are mobilized and the goal is, given a set of mobile
sensors and an area of interest inside the sensing field, to choose
a subset of sensors to be delegated to the area of interest with
certain objective functions such that coverage and connectivity
properties are satisfied.

In the literature, the art gallery problem [24], [25] also aims
to use the minimum number of guards to watch a polygon area.
However, it is assumed that a guard can watch any point as long
as line-of-sight exists and it does not address the communication
issue between guards. Several studies [8], [13], [21] model a
sensing field as grid points and discuss how to place sensors
on some grid points to satisfy certain coverage requirements.
Reference [8] discusses how to place two types of sensors with
different costs and sensing ranges such that every grid point is
covered by sensors and the total cost is minimized. The work
in [13] considers a probabilistic sensing model and discusses
how to place sensors in a field possibly with obstacles such
that every grid point is covered with a minimum confidence
level. In [21], the objective is to place sensors to ensure that
every grid point is covered by different sensors; the result is to
distinguish from different grid points for localization applications.
Using grid approximation may cause high computation cost. Also,
these works do not address the relationship between sensors’
communication distance rc and sensing distance rs. The work in
[18] suggests to place sensors strip by strip, but it only addresses
the rc = rs case and does not consider the existence of obstacles.
Sensor deployment has also been discussed in the area of robotics
[1], [15]. With robots, sensors can be deployed one by one and the
result can be applied to an unknown environment. Some works
[7], [26], [32], [33] address the coverage and connectivity issue by
assuming that there is redundancy in the initial deployment and
the goal is to alternate sensors between sleep and active modes
to reduce energy consumption while maintaining full coverage of
the sensing field.

Mobilizers have been assumed in several studies. References
[14], [29], [35] discuss how to move sensors to enhance coverage
of the sensing field by using the Voronoi diagram or attrac-
tive/repulsive forces between sensors. The works in [30], [31]
partition the sensing field into grids, and move sensors from high-
density grids to low-density ones to construct a uniform topology.
The work [4] suggests to move some sensors to make the network
biconnected. In [6], it discusses how to move sensors to some
locations (such as where events happen) while still maintaining
complete coverage of the sensing field. As can be seen, the goals
of existing works are quite different from the dispatch problem
defined in this work. In fact, the works [11], [17], [28] have
proposed their design and implementation of mobile sensors.
Such mobile platforms are controlled by embedded computers and

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 2

mounted with sensors. These works do motivate us to investigate
the dispatch problem.

In this work, we propose more general solutions to the sensor
placement problem than existing results. Our approach allows an
arbitrary relationship between a sensor’s communication distance
and its sensing distance. The sensing field is assumed to be a
polygon of any shape in which there may be arbitrary-shaped
obstacles. So the results can model an indoor environment. Our
approach first partitions the sensing field into smaller sub-regions.
In each sub-region, we arrange sensors row by row such that
each row guarantees continuous coverage and connectivity and
that adjacent rows ensure continuous coverage. Finally, columns
of sensors are added to ensure connectivity between rows. The
result requires fewer sensors compared to other schemes. For the
sensor dispatch problem, we have proposed a centralized and
a distributed schemes based on the former placement results.
Both schemes attempt to minimize the total energy consumption
to move sensors, or to maximize the average remaining energy
of those sensors that are moved into the area of interest. The
first scheme converts the dispatch problem to the maximum-
weight maximum-matching problem, whose optimal solution can
be found in polynomial time. With a greedy strategy, the second
scheme is distributed in that sensors will select the most suitable
locations as their destinations and compete with each other to
move to these locations.

The rest of this paper is organized as follows. Section II
formally defines the sensor placement and dispatch problems.
Sections III and IV propose our solutions to these problems.
Simulation results are presented in Section V. Conclusions are
drawn in Section VI.

II. PROBLEM DEFINITIONS

A. The Sensor Placement Problem

We are given a sensing field A to be deployed with sensors.
Each sensor has a communication distance rc and a sensing
distance rs. Sensors are homogenous, but we allow an arbitrary
relationship of rc and rs. The sensing field A is modeled by an
arbitrary 2D polygon. Obstacles may exist inside A, which are
also modeled by polygons of arbitrary shapes. However, obstacles
do not partition A (otherwise, maintaining network connectivity
wouldn’t be possible). With the presence of obstacles, we define
two sensors si and sj to be connected if |sisj | ≤ rc and the
line segment sisj does not intersect any obstacle or boundary of
A; otherwise, they are disconnected. Fig. 1(a) and (b) show two
examples. Obstacles may also reduce the coverage of a sensor.
We assume that a point can be monitored by a sensor if it is
within a distance of rs and line-of-sight exists with the existence
of obstacles. Fig. 1(c) and (d) give two examples. Note that here
we adopt the binary sensing model [14], [18] of sensors, where
a location can be either monitored or not monitored by a sensor.
In Section III-D, we will discuss how to adjust our placement
solution to adapt to the probabilistic sensing model [9], [13],
[36], where a location will be monitored by a sensor with some
probability function.

Our objective is to place sensors in A to ensure both sensing
coverage (in the sense that no point in A is unmonitored) and net-
work connectivity (in the sense that no sensor gets disconnected)
using as few sensors as possible. The concepts of coverage and
connectivity in an office environment are illustrated in Fig. 2(a)
and (b). Note that we assume rc = rs in this example.

(a) si and sj are connected (b) the obstacle disconnects si and sj

obstacle

(c) coverage with a large obstacle (d) coverage with a small obstacle

obstacle

obstacle obstacle

covered

region
line-of-sight

c
r c

r

s
r s

r

is
js i

s
js

Fig. 1. Assumptions on connectivity and coverage.

Fig. 2. An example of sensor deployment in an office environment.

B. The Sensor Dispatch Problem

We are given a sensing field A, an area of interest I inside A,
and a set of mobile sensors S resident in A. The sensor dispatch
problem asks how to find a subset S′ ⊆ S of sensors to be moved
to I such that after the deployment, I satisfies our coverage and
connectivity requirements and the movement cost satisfies some
objective function. Here we consider two functions. The first one
is to minimize the total energy consumption to move sensors, i.e.,

min
∑
i∈S′

Δm × di, (1)

where Δm is the unit energy cost to move a sensor in one step
and di is the distance that sensor i has to be moved. The second
one is to maximize the average remaining energy of sensors after
the movement, i.e.,

max

∑
i∈S′ (ei − Δm × di)

|S′| , (2)

where ei is the initial energy of sensor i. Note that the calculation
of di should take the existence of obstacles into account. Fig. 2(c)
and (d) illustrate the concept of sensor dispatch.

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 3

(a) (b)

sr

c
r

3
s

r

3
s

r

3
s

r

Fig. 3. Two possible sensor placements: (a) coverage-first placement and (b)
connectivity-first placement.

III. SOLUTIONS TO THE SENSOR PLACEMENT PROBLEM

To start with, we first consider two possible placements. The
first one tries to reduce the number of sensors by minimizing the
overlapping coverage. The result would be as shown in Fig. 3(a),
where neighboring sensors are evenly separated by a distance of√

3rs. This scheme is efficient when rc ≥ √
3rs since connectivity

is automatically guaranteed. However, when rc <
√

3rs, extra
sensors have to be added to maintain connectivity. It is inefficient
because all sensing field has been covered and these newly
added sensors will not make any contribution to coverage. The
second possible placement is to meet the connectivity requirement
first. This placement would be as shown in Fig. 3(b), where
neighboring sensors are evenly separated by a distance of rc.
This scheme is efficient when rc ≤ √

3rs because coverage
is automatically guaranteed. However, when rc >

√
3rs, extra

sensors have to be added to maintain coverage. It is inefficient
because the overlapping coverage could be large.

Our placement has the following features. First, it avoids the
dilemma in the above placements by taking both rc and rs into
account. Second, our solution is more general as it allows an
arbitrary shape of sensing field A and possibly obstacles in A. Our
scheme works in two steps. First, it partitions A into a number of
regions. Regions are classified into single-row regions and multi-
row regions. A single-row region is a belt-like area with width
no larger than

√
3rmin, where rmin = min{rc, rs}, so a row of

sensors is sufficient to fully cover the region while maintaining
connectivity. A multi-row region is perceivably larger and can
be covered by several rows of sensors. Fig. 4 gives an example,
where the sensing field is partitioned into eight single-row regions
and six multi-row regions.

A. Partitioning the Sensing Field

Algorithm 1 gives the pseudo code of our partition algorithm.
The idea is to first identify all single-row regions. After excluding
single-row regions, the remaining regions are multi-row regions.

To identify single-row regions, we expand the boundaries of
A inward and perimeters of obstacles outward by a distance of√

3rmin. If there is a single-row region between one obstacle
and A’s boundary line segment uv, the expanded parallel line
u′v′ must cut off a partial region, say, O of the obstacle or A
(the area outside A). Then we can take a projection from O
to uv to obtain the single-row region. Fig. 4(a) shows how to
find single-row regions for the boundary, where the dotted lines
are the expanded parallel lines of A’s boundaries. After taking
projections, we can obtain six single-row regions a, b, d, e, f ,

and h in Fig. 4(b). Then we can perform the same steps for
each obstacle. Note that a single-row region obtained from one
obstacle may have overlapping with those obtained earlier (due
to different projections). In this case, we can simply merge those
with overlappings into one single-row region. This guarantees that
our partition algorithm will produce a unique output. Fig. 4(b)
shows all obtained single-row regions.

The aforementioned step may obtain several single-row regions.
Excluding such regions, the remaining areas of A are multi-row
regions. An example is given in Fig. 4(c). Note that there could
be still obstacles inside a multi-row region (e.g., the region 6).

Algorithm 1: Partition
Input: A: sensing field

B: set of A’s boundaries and obstacles’ perimeters
Output: single-row and multi-row regions

foreach uv ∈ B do /∗ find out all single-row regions ∗/1

expand a parallel line u′v′ by a distance of
√

3rmin;2

if u′v′ cuts off a partial region O of an obstacle then3

take a project P from O to uv;4

if P overlaps an existing single-row region P ′ then5

merge P and P ′ into one single-row region;6

else7

make P a new single-row region;8

end9

exclude all single-row regions from A and the rest of the10

regions are multi-row regions;

B. Placing Sensors in Single-row Regions

For a single-row region, we can find its bisector and then place
a sequence of sensors along the bisector to satisfy both coverage
and connectivity. A bisector can be found by doing a triangulation
on that region, as shown in Fig. 5, and then connecting the
midpoints of all dotted lines. Following the bisector, we can place
a sequence of sensors each separated by a distance of rmin to
ensure coverage and connectivity of that region, as shown in
Fig. 5. Note that we always add an extra sensor at the end of
the bisector for ensuring connectivity to neighboring regions.

C. Placing Sensors in Multi-row Regions

Multiple rows of sensors will be placed in such regions. Below,
we first consider a simple 2D plane without boundaries and
obstacles. Then, we extend our result to an environment with
boundaries and obstacles. Finally, we discuss the property of
network connectivity in our placement scheme.

1) A Simple 2D Plane: Given a 2D plane without boundaries
and obstacles, we will place sensors row by row. The basic idea is
to form a row of sensors that can guarantee continuous coverage
and connectivity. Adjacent rows should guarantee continuous cov-
erage of the area. Finally, we may add some columns of sensors
between adjacent rows, if necessary, to ensure connectivity. Based
on the relationship of rc and rs, we separate the discussion into
two cases.

Case 1: rc <
√

3rs. In this case, sensors on each row are
separated by a distance of rc, so the connectivity of each row
can be guaranteed. Since rc <

√
3rs, each row of sensors can

cover a belt-like area with a width of 2δ, where δ =

√
r2
s − r2

c
4 .

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 4

(a) a sensing field with obstacles (b) single-row regions (c) multi-row regions

obstacle

obstacle

obstacle

obstacle

h

a

c

obstacle

123

4 5
6

g

d

e

f

b

expanded
parallel lines

min3r

u

v

u

v

,

,

cut-off area O

min3r

min3r

min3r

min3r

min3r

Fig. 4. Partitioning a sensing field.

obstacle

obstacle

obstacle

obstacle

single-row regions bisectors sensor placements (case of rc = rs)

o
b

s
ta

c
le

obstacle

minwidth 3r�

bisector

triangulation

midpoint

minwidth 3r�

minwidth 3r�

minwidth 3r�

Fig. 5. Finding bisectors of single-row regions and their sensor placements.

(a) (b) (d)(c)

3
s

r
c

r
sr

1n

2n3n

4n

5n
6n

s
r ��

2�

s
r

c
r

cr

1
2 c
r

2 3

2 sr
�

c
r

s
r

1
2 c
r

c
r

c
r

s
r

1
2 c
r

sr ��

Fig. 6. Placing sensors in a simple 2D plane: (a) case of rc < rs, (b) case of rc = rs, (c) case of rs < rc <
√

3rs, and (d) case of rc ≥ √
3rs.

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 5

TABLE I

COORDINATES OF THE SIX NEIGHBORS OF A SENSOR AT LOCATION (x, y)

IN A MULTI-ROW REGION.

neighbor rc <
√

3rs rc ≥ √
3rs

n1 (x + rc, y) (x +
√

3rs, y)

n2 (x + rc
2

, y − (rs + δ)) (x +
√

3rs
2

, y − 3rs
2

)

n3 (x − rc
2

, y − (rs + δ)) (x −
√

3rs
2

, y − 3rs
2

)

n4 (x − rc, y) (x −√
3rs, y)

n5 (x − rc
2

, y + (rs + δ)) (x −
√

3rs
2

, y + 3rs
2

)

n6 (x + rc
2

, y + (rs + δ)) (x +
√

3rs
2

, y + 3rs
2

)

Adjacent rows will be separated by a distance of rs+δ and shifted
by a distance of rc

2 . With such an arrangement, the coverage of
the whole area is guaranteed. Fig. 6(a) – (c) show three possible
subcases. Note that in this case, we have to add a column of
sensors between two adjacent rows, each separated by a distance
no larger than rc, to connect them.

Case 2: rc ≥ √
3rs. In this case, the previous approach will

waste a lot of sensors because a small rs will cause two rows to
be very close. So when rc ≥ √

3rs, we propose to place sensors in
a typical triangular-latticed manner such that adjacent sensors are
regularly separated by a distance of

√
3rs, as shown in Fig. 6(d).

Both coverage and connectivity properties are ensured.
2) Multi-row Regions with Boundaries and Obstacles: Next,

we modify the above solution for placing sensors in a region with
boundaries and obstacles. Observe that in our solution, sensors
are placed with regular patterns. Thus, it can be transformed into
an incremental approach where sensors are added into the field
one by one. In Table I, we list the coordinates of a sensor’s six
neighbors. We can place the first sensor in any location of the
region. From the first sensor, the six locations that can potentially
be added with sensors are determined. These locations are inserted
into a queue Q. We then enter a loop in which each time an entry
(x, y) is dequeued from Q. If (x, y) is not inside any obstacle
and not outside the multi-row region, a sensor will be placed in
(x, y). Also, the six neighboring locations of (x, y) in Table I are
inserted into Q if they have not been checked before. This process
is repeated until Q becomes empty.

There are three minor issues left in the above solution. First,
some areas near the boundaries or obstacles may be uncovered.
Second, when rc <

√
3rs, we need to add extra sensors between

adjacent rows to maintain connectivity. Third, connectivity to
neighboring regions needs to be maintained. Fig. 7(a) presents an
example. These problems can be solved by sequentially placing
sensors along the boundaries of the multi-row region and the
perimeters of obstacles, as shown in Fig. 7(b). There are two
cases to be considered. When rc <

√
3rs, since the maximum

width of the uncovered area does not exceed rc, sensors should
be separated by a distance of rc. When rc ≥ √

3rs, the maximum
width of the uncovered area does not exceed

√
3rs, so sensors

should be separated by a distance of
√

3rs. Since rc ≥ √
3rs, the

connectivity between these extra sensors and the regularly placed
sensors are guaranteed.

Note that we can save sensors in the last step by carefully
selecting the first sensor’s position in each multi-row region. In
particular, for each multi-row region, we can place the first sensor
near its longest boundary with a distance of δ if rc <

√
3rs and a

distance of rs
2 otherwise. This will make the first row of sensors

fully cover the longest boundary of the multi-row region and thus
we do not have to add extra sensors in the last step. In addition, if
the distance between a row of sensors and a boundary of the multi-
row region (or an obstacle) is no larger than δ when rc <

√
3rs

and no larger than rs
2 when rc ≥ √

3rs, we can also skip the last
step. For example, some boundaries in Fig. 7 are not added with
extra sensors.

3) Network Connectivity in a Multi-row Region: Here we
discuss the property of network connectivity in our placement
scheme. There are two cases to be discussed. When rc ≥ √

3rs,
because a sensor will directly connect to its six neighbors (refer
to Fig. 6(d)), the network is guaranteed to be at least 6-connected.
This means that the network will not be partitioned unless there
are more than five sensors broken.

On the other hand, when rc <
√

3rs, if both ends of each row
are connected with sensors (refer to Fig. 7(b)), the network is
guaranteed to be at least 2-connected. To improve the network
connectivity, we can add several columns of sensors, each evenly
separated and connecting rows together. With this, not only the
network connectivity is improved, but also the lengths of routing
paths are reduced. For example, in Fig. 7(b), two additional
columns of sensors are added on the top part. The original hop
count between sensors a and b is thus reduced from eight to five
with the help of additional columns. In Section V, we will further
address this issue through simulations.

D. Adapting to the Probabilistic Sensing Model

Up to now, our placement solution is based on the assumption
of binary sensing model. In some cases, however, the detection
probability of a sensor will decay with the distance from the
sensor to the object. For example, references [13], [36] suggest
that the detection probability of a location u by a sensor si can
be modeled by:

pu
si

=

{
e−αd(si,u), if d(si, u) ≤ rs

0, otherwise
,

where α is a parameter representing the physical characteristics
of the sensor and d(si, u) is the distance between si and u. Thus,
when an object located at u is within the sensing ranges of a set
Ŝ of sensors, the detection probability can be evaluated as

p(u) = 1 −
∏

si∈Ŝ
(1 − pu

si
).

It can be observed that in our placement solutions, for any
combination of rc and rs, there must exist a location which is
covered by only one sensor and has a distance of rs to the sensor.
The detection probability for such a location is e−αrs . Therefore,
our placement solutions can guarantee a detection probability of
at least e−αrs in any location of the sensing field. On the other
hand, if we want to guarantee that every point in the sensing field
has a detection probability no smaller than a given threshold pth,
we can compute a virtual sensing distance r′s by

e−αr′
s = pth ⇒ r′s = − ln pth

α
.

According to the above argument, if we replace rs by r′s when
running our placement solutions, it is guaranteed that every point
in the sensing field has a detection probability of at least pth.

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 6

uncovered areas

(a) uncovered areas near the boundaries and obstacles

connectivity

(b) add sensors for coverage and connectivity

obstacle

��

��

��

�

obstacle

extra sensors along boundaries to maintain network connectivity

additional columns of sensors to improve network reliability

a

b

�

Fig. 7. Placing sensors along boundaries and around obstacles to fill uncovered areas and to maintain network connectivity. This example assumes that
rc = rs.

IV. SOLUTIONS TO THE SENSOR DISPATCH PROBLEM

Given a set of sensors already deployed in A and an area
of interest I that has to be monitored intensively, the dispatch
problem will be solved by the following steps:

1. Based on our placement results, we first compute the loca-
tions to be placed with sensors in I and then select some
sensors to be moved to these locations.

2. In order to correctly report sensed data in I to the sink, we
need to connect sensors in I and the sink. We then place a
row of sensors, each separated by a distance of rc, from I
to the sink.

3. After dispatching sensors in steps 1 and 2, the remaining
sensors can be deployed uniformly in the region of A−I to
ensure that the coverage of A−I is not reduced too much.

We assume that there are sufficient sensors to satisfy the need
of steps 1 and 2. Step 2 can be achieved easily. Step 3 can be
done by applying the solutions using repulsive forces between
sensors [14], [35] on A − I. As a result, we will only focus on
the design of step 1 below. Fig. 2(c) and (d) give an example. In
this section, two solutions are proposed. The centralized solution
converts the dispatch problem to the maximum-weight maximum-
matching problem, while the distributed solution is based on a
greedy strategy.

A. A Centralized Dispatch Solution

Given a set S of sensors in A and an area of interest I, our
solution involves the following five steps:

1. Run the sensor placement algorithm in Section III on the
area I to determine the locations in I to be placed with
sensors. Let the set of locations be L = {(x1, y1), (x2, y2),
· · · , (xm, ym)}. If m ≤ |S|, go to step 2; otherwise, we are
short of sensors and the algorithm terminates.

2. For each sensor si ∈ S, determine the energy cost
c(si, (xj , yj)) to move si to each location (xj , yj), j =

1 · · ·m. We define c(si, (xj , yj)) = Δm × d(si, (xj , yj)),
where d(si, (xj , yj)) is the shortest distance from si’s current
position to (xj , yj) considering the existence of obstacles.
(How to compute the shortest distance will be discussed in
Section IV-A.1.)

3. From S and L, we construct a weighted complete bipartite
graph G = (S ∪L,S×L) such that the vertex set contains S
(all sensors) and L (all locations to be placed with sensors)
and the edge set contains all edges from every element si ∈
S to every element (xj , yj) ∈ L. The weight of each edge
(si, (xj , yj)) can be defined either as

w(si, (xj , yj)) = −c(si, (xj , yj)),

if Eq. (1) is the objective function, or as

w(si, (xj , yj)) = ei − c(si, (xj , yj)),

if Eq. (2) is the objective function.
4. Solve the maximum-weight maximum-matching problem on

graph G. In particular, we construct a new graph Ĝ = (S ∪
L ∪ L̂,S × {L ∪ L̂}) from G, where L̂ is a set of |S| − |L|

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 7

elements, each called a virtual location. The weight of each
edge in Ĝ that also appears in G remains the same as that in
G, and the weight of each edge from si ∈ S to (xj , yj) ∈ L̂
is set to wmin, where

wmin = min
si∈S, (xj ,yj)∈L

{w(si, (xj , yj))} − 1.

Intuitively, a virtual location is a dummy one. Its purpose is
to make the two sets S and {L∪L̂} of the bipartite graph Ĝ
to have equal sizes. This allows us to transform the problem
to the maximum-weight perfect-matching problem on graph
Ĝ, whose purpose is to find a perfect matching M in Ĝ
with the maximum total weights of edges in M. (How to
compute M will be discussed in Section IV-A.2.) Note that
the value of wmin is set in such a way that selecting an edge
incident to a virtual location has no impact to a solution to
the maximum-weight perfect-matching problem.

5. For each edge (si, (xj , yj)) in M such that (xj , yj) /∈ L̂,
we move sensor si to location (xj , yj) via the shortest path.
However, if there is any edge (si, (xj , yj)) ∈ M such that
(xj , yj) /∈ L̂ and ei−c(si, (xj , yj)) ≤ 0, it means that we do
not have sufficient energy to move sensors to all locations
in L because M is the optimal solution. Thus the algorithm
terminates.

1) Computing the Shortest Distance d(si, (xj , yj)): Our goal is
to find the shortest collision-free path from si’s current position
to (xj , yj), considering the existence of obstacles. Specifically,
the movement of si should not collide with any obstacle. Several
studies have addressed this issue [12], [22], [34]. Here we propose
a modified approach of [22].

Considering its physical size, si is modeled as a circle with a
radius r. Intuitively, si has a collision-free motion if its center
always keeps at a distance of r or larger away from every
obstacle and A’s boundaries. This can be done by expanding
the perimeters of all obstacles outwardly and A’s boundaries
inwardly by a distance of r and preventing si from moving into
these expanded areas. The problem can be translated to one of
finding a shortest path from si to (xj , yj) in a weighted graph
H = (si ∪ (xj , yj)∪V, E), where V contains all vertices v of the
polygons representing the expanded areas of obstacles and A’s
boundary such that v is not inside other expanded areas, and E
contains all edges (u, v) such that u, v ∈ {si∪(xj , yj)∪V} and uv

does not pass any expanded area of obstacles or A. The weight of
(u, v) ∈ E is length of uv. Fig. 8 gives an example, where double
circles are vertices of H. Nodes g and h are not vertices because
they are inside obstacles 2’s and 3’s expanded areas, respectively.
Edges (a, c), (a, d), (b, c), and (b, d) ∈ E , but (b, e) and (b, f) /∈ E
because they pass the expanded area of obstacle 2.

2) Finding the Maximum-Weight Perfect-Matching M: Recall
that given the bipartite graph Ĝ = (S ∪ L ∪ L̂,S × {L ∪ L̂}), the
goal is to find a perfect matching M in Ĝ with the maximum
total weights of edges in M. In this section, we discuss how to
use the Hungarian method [19] to solve this problem.

Definition 1: Given Ĝ = (S ∪ L ∪ L̂,S × {L ∪ L̂}), a feasible
vertex labeling of Ĝ is a real-valued function f on {S ∪ L ∪ L̂}
such that for all si ∈ S and (xj , yj) ∈ {L ∪ L̂},

f(si) + f((xj , yj)) ≥ w(si, (xj , yj)).

Definition 2: Given a feasible vertex labeling of Ĝ, an equality
subgraph Ĝf = (S ∪L∪ L̂, Ef) is the subgraph of Ĝ in which Ef

contains all edges (si, (xj , yj)) in Ĝ such that

f(si) + f((xj , yj)) = w(si, (xj , yj)).

Theorem 1: Let f be a feasible vertex labeling of Ĝ and M be
a perfect matching of Ĝf , then M is a maximum-weight perfect
matching of Ĝ.

Proof: We show that no other perfect matching M′ in Ĝ
has a total weight larger than M.

w(M′) =
∑

(si,(xj ,yj))∈M′
w(si, (xj , yj))

≤
∑

(si,(xj ,yj))∈M′
f(si) + f((xj , yj))

=
∑

(si,(xj ,yj))∈M
f(si) + f((xj , yj))

=
∑

(si,(xj ,yj))∈M
w(si, (xj , yj))

= w(M),

so M has the maximum total weights of edges.
The Hungarian method is based on the observation from

Theorem 1. It first assigns an arbitrary feasible vertex labeling
for the graph Ĝ, and then adjusts the labels of vertices until it
can find a perfect matching M in the equality subgraph Ĝf . One
possible feasible vertex labeling is to set f((xj , yj)) = 0 for all
(xj , yj) ∈ {L∪L̂} and to set f(si) to the maximum of the weights
of the edges adjacent to si for all si ∈ S, i.e.,

f(si) = max
(xj ,yj)∈{L∪L̂}

{w(si, (xj , yj))}, ∀si ∈ S.

The complete procedure of the Hungarian method is stated as
follows:

1. Find a maximum matching M in Ĝf . If M is perfect, we
find out the solution and the method finishes. Otherwise,
there must be an unmatched vertex si ∈ S. We then assign
two sets X = {si} and Y = ∅.

2. In the graph Ĝf , if NĜf
(X) �= Y , where NĜf

(X) is the set

of vertices in {L∪ L̂} that are adjacent to the vertices in X ,
then go to step 3. Otherwise, we set

β = min
si∈X

(xj ,yj)∈{L∪L̂}−Y
{f(si)+f((xj , yj))−w(si, (xj , yj))},

and construct a new labeling f ′ for Ĝ by

f ′(v) =

⎧⎨⎩
f(v) − β, for v ∈ X
f(v) + β, for v ∈ Y
f(v), otherwise

.

Then we replace f by f ′, reconstruct the equality subgraph
Ĝf ′ , and go to step 1. Note that we have to satisfy the
conditions of β > 0 and NĜf′ (X) �= Y; otherwise, we
need to reselect another β value that can satisfy the above
conditions.

3. Choose a vertex (xl, yl) in NĜf
(X) but not in Y . If (xl, yl)

is matched with sk ∈ S in M, then we update X = X ∪{sk}
and Y = Y ∪ {(xl, yl)}, and go back to step 2.

Note that each time when we relabeling the graph Ĝ, we may
introduce new edges into the new equality subgraph Ĝf , until
all edges in Ĝ are included. Therefore, the Hungarian method
can always find a perfect matching in Ĝf since Ĝ is a complete
bipartite graph.

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 8

obstacle 1

si

obstacle 2

(xj, yj)

r

r

obstacle 3

r

a

b

c

d

e

f

g

h

vertice of H

edge of H

expanded area

shortest path

r

Fig. 8. Finding a collision-free path from si to (xj , yj). Note that not all edges of H are shown in the figure.

3) Time Complexity Analysis: Next, we analyze the time
complexity of our sensor dispatch solution. Let |S| = n, |L| = m,
and k be the number of vertices of the polygons of all obstacles
and A. In step 2, there are O(nm) pairs of (si, (xj , yj)). To
compute the energy cost of each pair, we construct a graph of
O(k) vertices. Finding a shortest path on such graph can use the
Dijkstra’s algorithm [10], which takes O(k2) time. So the total
time complexity of step 2 is O(mnk2). The conversion in step
3 takes O(nm) time. In step 4, constructing the graph Ĝ from
G takes O(n(n − m)) time since it needs to add n − m vertices
and n(n−m) edges. Running the Hungarian method on Ĝ has a
time complexity of O(n3). Finally, it takes O(n) time in step 5
to check all edges in M. Therefore, the total time complexity is

O(mnk2) + O(nm) + O(n(n − m)) + O(n3) + O(n)

= O(mnk2 + n3).

B. A Distributed Dispatch Solution

The aforementioned solution is optimal but centralized. Here
we propose a distributed solution based on a greedy strategy. The
solution involves the following steps:

1. The sink runs the placement algorithm in Section III
on the area I to obtain a set of locations L =

{(x1, y1), · · · , (xm, ym)} to be occupied by sensors. The
sink then broadcasts L to all sensors.

2. On receiving the table L, a sensor will keep a copy of L and
mark each location (xj , yj) as unoccupied, j = 1 · · ·m.

3. Each sensor si then chooses an unoccupied location (xj , yj)

from L as its destination. The selection of (xj , yj) is
dependent on our objective function.
• If Eq. (1) is the objective function, si will choose

the location (xj , yj) such that the moving distance
d(si, (xj , yj)) is minimized as its destination.

• If Eq. (2) is the objective function, si will choose the
location (xj , yj) such that after moving to (xj , yj), its
remaining energy is maximized.

Sensor si will then start moving to (xj , yj) and mark (xj , yj)

as occupied.
4. On si’s way moving toward its destination, it will periodi-

cally broadcast the status of its table L, its destination, and
its cost to move to that destination. Note that the cost is
based on which objective function is used. The above action
can be controlled by setting a timer Tbroadcast. On sensor sk

receiving si’s broadcast, the following actions will be taken:
• For all locations marked as occupied by si, sk will also

mark them as occupied.

• If both si and sk are moving toward the same destina-
tion, they will compete by their costs. The one with
a lower cost will win and keep moving toward that
destination. The one with a higher cost will give up
moving toward that destination and go back to step 3
to reselect a new destination. (Note that in case that sk

has arrived at its destination, it will have a cost of zero,
in which case si will lose in the competition.)

5. Each sensor will repeat the above steps until it reaches
its destination or loses to another sensor and finds that
all locations in L have been marked as occupied. In the
former case, the sensor will execute its monitoring job at
the designated location. In the latter case, the sensor will
continue to support the remaining steps 2 and 3 mentioned
in the beginning of Section IV (to connect I and the sink
or to monitor the area A− I).

To prove the convergence of this distributed algorithm, we
have to show that every location (xj , yj) in L can eventually
be covered by one sensor. Step 4 guarantees that a sensor si will
eventually arrive at the location (xj , yj) if it always wins the
competition. If si loses the competition, it means that (xj , yj)

has been committed by another sensor. In this case, si has to
go back to step 3 to reselect another destination. A sensor will
continue moving until it finds that all locations are marked as
occupied. Therefore, as long as there are sufficient sensors, all
locations will eventually be covered by sensors. It is possible
that without sufficient information, a sensor may keep on moving
even if all locations in L are occupied. However, it will eventually
meet another sensor or reach the area I and be aware of the fact
that L has been occupied (note that the network in I must be
connected and thus sensors in I must have correct information).
So the convergence of the algorithm is proved.

V. EXPERIMENTAL RESULTS

In this section, we present some simulation results to verify
the effectiveness of the proposed algorithms. The first experiment
evaluates the number of sensors required to cover a sensing field.
We design six types of sensing fields as shown in Fig. 9. Sensors
are assumed to have omnidirectional sensing capability (such as
acoustic sensors). The communication distance rc is set to 10 m
(which is close to that specified in IEEE 802.15.4 [20] in an
indoor environment). To reflect the relationships of rc < rs,
rc = rs, rs < rc <

√
3rs, and rc ≥ √

3rs, we set the sensing
distance rs to 12 m, 10 m, 7 m, and 5 m, respectively. We compare
our result against the coverage-first and connectivity-first methods

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 9

(a) rectangle (b) circle (c) non-convex polygon

(d) H-shape (e) office (Fig. 2) (f) arbitrary shape (Fig. 4)

200

300

400

200

80

400

240

300 160

180

400

150

300

400

300

400

5

5

40 120

20
30

80
60

5
18080

5
5

5
20

40

100

200

100 60

60

80

120 60

80 20 10

150

110

Fig. 9. Six types of sensing fields used in the simulations. The unit of length is meter.

(a) (b)

Fig. 10. Two common regular placement patterns: (a) hexagon placement
and (b) square placement.

discussed in the beginning of Section III, and two common regular
placement patterns [3], hexagon and square, as shown in Fig. 10.
To ensure both coverage and connectivity, we set the distance
between adjacent sensors to rmin in the hexagon placement. In
the square placement, the distance between adjacent sensors is
set to rc if rc <

√
2rs, and set to

√
2rs otherwise.

Fig. 11 shows the number of sensors required in different
placement methods. As can be seen, our placement method uses
the least number of sensors in all cases. The coverage-first method
uses more sensors when rs < rc <

√
3rs, because it needs

many extra sensors to maintain connectivity between neighboring
sensors. The connectivity-first method uses more sensors when
rc ≤ rs, because it is dominated by the value of rc and the
overlapping in coverage is large. The hexagon method uses more
sensors when rc > rs, because the distance between adjacent
sensors is limited to small rs. The situation becomes worse as rs

becomes smaller. The square method uses more sensors when
rc <

√
2rs, because it is dominated by the value of rc and

the overlapping in coverage could be also large. Note that when
rc ≥ √

3rs, our method works the same as the coverage-first
method in each individual region, so both schemes will use the
same number of sensors.

When rc <
√

3rs, our placement scheme has the flexibility to
reduce the routing paths of sensors by adding several columns
of sensors. In the second experiment, we evaluate the effect of
the number of additional columns on the all-pair shortest paths
of sensors. In particular, we measure the average hop count of

the shortest path between any two sensors in our placement. In
this experiment, we set the sensing field as the one specified in
Fig. 9(a), and we consider the case of rc = rs. Fig. 12 shows the
results when rc is set to 10 m, 5 m, and 3 m, where the number
of sensors in each row will be 41, 81, and 161, respectively. In
Fig. 12, we can observe that the average hop count of the all-
pair shortest paths can be reduced when we add more columns
of sensors. However, adding these columns will increase the total
number of sensors to be placed in the sensing field. From Fig. 12,
we can find that the suitable number of additional columns is
around two to three when the number of sensors in each row is
among 40 to 160.

The third experiment evaluates different dispatch schemes. The
sensing field A is a 900 m × 900 m square. The region of interest
I is a 300 m × 300 m square located at the center of A. Sensors
are randomly scattered over the region of A−I. With the setting
of (rc, rs) = (28, 16), (23.5, 13.45), (21, 12), (19.5, 11.05), (17.5,
10.1), (16.5, 9.45), and (15.5, 8.9), we will need 150, 200, 250,
300, 350, 400, and 450 sensors, respectively, to be dispatched to
I, according to our placement algorithm. To fairly compare the
centralized and the distributed schemes, the number of sensors is
intentionally set to the required number of sensors in I. Sensors’
initial energies are randomly selected from [1000, 1500] units, and
we set the moving cost Δm = 1 energy unit per meter. The speed
of a sensor is set to 0.5 m/s. For our distributed dispatch method,
we set the timer Tbroadcast as one second. For comparison,
we also design a random method, where we arbitrarily select a
sensor to move to each location in a centralized manner. Fig. 13
shows the simulation results under different number of sensors
required in I. From Fig. 13(a), we can observe that our centralized
method (using Eq. (1) as the objective function) consumes the
least energy compared to other methods. This is a result of our
maximum-matching approach. The distributed method consumes
more energy than the centralized method since our greedy strategy
can make local decisions. The similar result can be observed
from Fig. 13(b), where the centralized method (using Eq. (2) as
the objective function) can achieve the highest average remaining
energy of sensors in I. Note that under both objective functions,
the random method always consumes the most energy, even
though sensors are selected in a centralized manner. This reflects

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

n
u
m

b
e
r

o
f
s
e
n
s
o
rs

re
q
u
ir
e
d

(f) arbitrary shape

0

500

1000

1500

2000

2500

3000

3500

4000

4500

n
u
m

b
e
r

o
f
s
e
n
s
o
rs

re
q
u
ir
e
d

(e) office

0

500

1000

1500

2000

2500

3000

3500

4000

4500

n
u
m

b
e
r

o
f
s
e
n
s
o
rs

re
q
u
ir
e
d

(c) non-convex polygon

0

500

1000

1500

2000

2500

3000

3500

4000

4500

n
u
m

b
e
r

o
f
s
e
n
s
o
rs

re
q
u
ir
e
d

(d) H-shape

0

500

1000

1500

2000

2500

3000

3500

4000

4500

n
u
m

b
e
r

o
f
s
e
n
s
o
rs

re
q
u
ir
e
d

(b) circle

0

500

1000

1500

2000

2500

3000

3500

4000

4500

n
u

m
b

e
r

o
f

s
e

n
s
o

rs
re

q
u

ir
e

d

ours

coverage-first

connectivity-first

hexagon

square

(a) rectangle

�
c s
r r �

c s
r r � � 3

s c s
r r r � 3

c s
r r

�
c s
r r �

c s
r r � � 3

s c s
r r r � 3

c s
r r

�
c s
r r �

c s
r r � � 3

s c s
r r r � 3

c s
r r �

c s
r r �

c s
r r � � 3

s c s
r r r � 3

c s
r r

�
c s
r r �

c s
r r � � 3

s c s
r r r � 3

c s
r r

�
c s
r r �

c s
r r � � 3

s c s
r r r � 3

c s
r r

Fig. 11. Comparison of number of sensors required under different types of sensing fields.

the importance of the dispatch issue since blindly moving sensors
will lead to shorten network lifetime.

With the same settings in the previous experiment, the last
experiment evaluates the effect of the broadcast timer Tbroadcast

on the number of broadcasts and average moving distance of a
sensor when our distributed dispatch method is adopted. In this
experiment, we use Eq. (1) as the objective function. Fig. 14
illustrates the simulation results when the number of sensors are
200 and 400. From Fig. 14, we can observe that when Tbroadcast

becomes larger, the number of broadcasts can be reduced. How-
ever, this will cause sensors to move longer distances, and thus
extend the convergence time of the distributed algorithm. From
Fig. 14, we can find that the best value of Tbroadcast is around
two since both the number of broadcasts and average moving
distance can be kept quite small.

VI. CONCLUSIONS

In this work, we have proposed systematical solutions for
sensor placement and dispatch. Our solution allows a sensing
field of shape as an arbitrary polygon with possible existence of
obstacles. Thus, the result can be used for an indoor environment.
Our solution also allows an arbitrary relationship of sensors’
communication distances and sensing distances. It is verified
that the proposed schemes require fewer sensors to ensure full
coverage of the sensing field and connectivity of the network as
compared to other placement schemes in various types of sensing

0

20

40

60

80

100

120

140

None 1 2 3 4 5 6 7 8 Max

number of additional columns of sensors

a
v
e

ra
g

e
h

o
p

c
o

u
n

t
o

f

th
e

a
ll
-p

a
ir

s
h

o
rt

e
s
t
p

a
th

s = 10 m

= 5 m

= 3 m

rc

rc

rc

Fig. 12. Effect of additional columns on the all-pair shortest paths of sensors.

fields. A new sensor dispatch problem is defined and two energy-
efficient dispatch algorithms are presented to move sensors to the
target locations determined by our sensor placement scheme.

ACKNOWLEDGMENT

Y. C. Tseng’s research is co-sponsored by Taiwan MoE
ATU Program, by NSC grants 93-2752-E-007-001-PAE, 96-
2623-7-009-002-ET, 95-2221-E-009-058-MY3, 95-2221-E-009-
060-MY3, 95-2219-E-009-007, 95-2218-E-009-209, and 94-
2219-E-007-009, by Realtek Semiconductor Corp., by MOEA

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 11

850

880

910

940

970

1000

1030

150 200 250 300 350 400 450

number of sensors in I

a
v
e

ra
g

e
re

m
a

in
in

g
e

n
e

rg
y

centralized
distributed
random

20

40

60

80

100

120

140

160

180

150 200 250 300 350 400 450

number of sensors in I

to
ta

l
m

o
v
in

g
e

n
e

rg
y

(x
1

0
0

0
) centralized

distributed
random

(b)

(a)

Fig. 13. Comparison of different dispatch methods: (a) the total energy
consumption for movement when using Eq. (1) as the objective function,
and (b) the average remaining energy of sensors when using Eq. (2) as the
objective function.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

n
u

m
b

e
r

o
f
b

ro
a

d
c
a

s
ts

p
e

r
s
e

n
s
o

r

272

272.25

272.5

272.75

273

273.25

273.5

273.75

274

274.25

274.5

274.75

275

a
v
e
ra

g
e

m
o
v
in

g
d
is

ta
n
c
e

o
f
s
e
n
s
o
rs

(m
)

number of broadcasts
moving distance

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10

n
u

m
b

e
r

o
f
b

ro
a

d
c
a

s
ts

p
e

r
s
e

n
s
o

r

274.25

274.5

274.75

275

275.25

275.5

275.75

276

276.25

276.5

276.75

a
v
e
ra

g
e

m
o
v
in

g
d
is

ta
n
c
e

o
f
s
e
n
s
o
rs

(m
)

number of broadcasts

moving distance

(b) number of sensors: 400

(a) number of sensors: 200

Tbroadcast (second)

Tbroadcast (second)

Fig. 14. Effect of Tbroadcast on the number of broadcasts and average
moving distance of a sensor.

under grant number 94-EC-17-A-04-S1-044, by ITRI, Taiwan, by
Microsoft Corp., and by Intel Corp.

REFERENCES

[1] E. U. Acar, H. Choset, and P. N. Atkar, “Complete sensor-based coverage
with extended-range detectors: a hierarchical decomposition in terms
of critical points and voronoi diagrams,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001, pp. 1305–1311.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102–114, 2002.

[3] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai, “Deploying wireless
sensors to achieve both coverage and connectivity,” in ACM International
Symposium on Mobile Ad Hoc Networking and Computing, 2006, pp.
131–142.

[4] P. Basu and J. Redi, “Movement control algorithms for realization of
fault-tolerant ad hoc robot networks,” IEEE Network, vol. 18, no. 4, pp.
36–44, 2004.

[5] J. Burrell, T. Brooke, and R. Beckwith, “Vineyard computing: sensor
networks in agricultural production,” IEEE Pervasive Computing, vol. 3,
no. 1, pp. 38–45, 2004.

[6] Z. Butler and D. Rus, “Event-based motion control for mobile-sensor
networks,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 34–42, 2003.

[7] A. Cerpa and D. Estrin, “ASCENT: adaptive self-configuring sensor
networks topologies,” in IEEE INFOCOM, 2002, pp. 1278–1287.

[8] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid coverage for
surveillance and target location in distributed sensor networks,” IEEE
Transactions on Computers, vol. 51, no. 12, pp. 1448–1453, 2002.

[9] T. Clouqueur, K. K. Saluja, and P. Ramanathan, “Fault tolerance in
collaborative sensor networks for target detection,” IEEE Transactions
on Computers, vol. 53, pp. 320–333, 2004.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, The MIT Press, 2001.

[11] T. A. Dahlberg, A. Nasipuri, and C. Taylor, “Explorebots: a mobile
network experimentation testbed,” in ACM SIGCOMM Workshop on
Experimental Approaches to Wireless Network Design and Analysis,
2005, pp. 76–81.

[12] G. M. Dai, A. H. Du, Q. H. Li, and M. C. Wang, “Planning of moving
path based on simplified terrain,” in IEEE International Conference on
Machine Learning and Cybernetics, 2003, pp. 1915–1918.

[13] S. S. Dhillon and K. Chakrabarty, “Sensor placement for effective
coverage and surveillance in distributed sensor networks,” in IEEE
Wireless Communications and Networking, 2003, pp. 1609–1614.

[14] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent
mobile sensor networks,” IEEE Transactions on Systems, Man and
Cybernetics - Part A: Systems and Humans, vol. 35, no. 1, pp. 78–92,
2005.

[15] A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental self-
deployment algorithm for mobile sensor networks,” Autonomous Robots,
vol. 13, no. 2, pp. 113–126, 2002.

[16] T. T. Hsieh, “Using sensor networks for highway and traffic applica-
tions,” IEEE Potentials, vol. 23, no. 2, pp. 13–16, 2004.

[17] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci,
and J. Lepreau, “Mobile Emulab: a robotic wireless and sensor network
testbed,” in IEEE INFOCOM, 2006.

[18] K. Kar and S. Banerjee, “Node placement for connected coverage
in sensor networks,” in International Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, 2003.

[19] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[20] LAN/MAN Standards Committee of the IEEE Computer Society, “IEEE
Std 802.15.4-2003, Wireless medium access control (MAC) and physical
layer (PHY) specifications for low-rate wireless personal area networks
(LR-WPANs),” IEEE, 2003.

[21] F. Y. S. Lin and P. L. Chiu, “A near-optimal sensor placement algorithm
to achieve complete coverage/discrimination in sensor networks,” IEEE
Communications Letters, vol. 9, no. 1, pp. 43–45, 2005.

[22] Y. H. Liu and S. Arimoto, “Finding the shortest path of a disc
among polygonal obstacles using a radius-independent graph,” IEEE
Transactions on Robots and Automation, vol. 11, pp. 682–691, 1995.

[23] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,
“Coverage problems in wireless ad-hoc sensor networks,” in IEEE
INFOCOM, 2001, pp. 1380–1387.

[24] J. O’Rourke, Art gallery theorems and algorithms, Oxford University
Press, 1987.

IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-0278-1006.R1 12

[25] T. C. Shermer, “Recent results in art galleries,” Proceedings of the IEEE,
vol. 80, no. 9, pp. 1384–1399, 1992.

[26] D. Tian and N. D. Georganas, “A coverage-preserving node scheduling
scheme for large wireless sensor networks,” in ACM International
Workshop on Wireless Sensor Networks and Applications, 2002, pp. 32–
41.

[27] Y. C. Tseng, M. S. Pan, and Y. Y. Tsai, “Wireless sensor networks for
emergency navigation,” IEEE Computer, vol. 39, no. 7, pp. 55–62, 2006.

[28] Y. C. Tseng, Y. C. Wang, and K. Y. Cheng, “An integrated mobile
surveillance and wireless sensor (iMouse) system and its detection delay
analysis,” in ACM International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, 2005, pp. 178–181.

[29] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deploy-
ment,” in IEEE INFOCOM, 2004, pp. 2469–2479.

[30] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in
mobile sensor networks,” in IEEE INFOCOM, 2005, pp. 2302–2312.

[31] J. Wu and S. Yang, “SMART: a scan-based movement-assisted sensor
deployment method in wireless sensor networks,” in IEEE INFOCOM,
2005, pp. 2313–2324.

[32] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, “PEAS: a robust
energy conserving protocol for long-lived sensor networks,” in IEEE
International Conference on Distributed Computing Systems, 2003, pp.
28–37.

[33] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity
in large sensor networks,” International Journal of Wireless Ad Hoc and
Sensor Networks, vol. 1, no. 1–2, pp. 89–124, 2005.

[34] S. Q. Zheng, J. S. Lim, and S. S. Iyengar, “Finding obstacle-avoiding
shortest paths using implicit connection graphs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15, pp.
103–110, 1996.

[35] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization
based on virtual forces,” in IEEE INFOCOM, 2003, pp. 1293–1303.

[36] Y. Zou and K. Chakrabarty, “A distributed coverage- and connectivity-
centric technique for selecting active nodes in wireless sensor networks,”
IEEE Transactions on Computers, vol. 54, pp. 978–991, 2005.

You-Chiun Wang received his B.S. and M.S. de-
grees in Computer Science and Information Engi-
neering from the National Chung-Cheng University
and the National Chiao-Tung University, Taiwan, in
2001 and 2003, respectively. He obtained his Ph.D.
in Computer Science from the National Chiao-Tung
University, Taiwan, in October of 2006. Currently, he
is a postdoctoral research associate at the department
of Computer Science, National Chiao-Tung Univer-
sity, Taiwan. His research interests include wireless
communication, mobile computing, and sensor net-

works.

Chun-Chi Hu received her B.S. and M.S. degrees
in Computer Science and Information Engineering
from the National Chiao-Tung University, Taiwan, in
2003 and 2005, respectively. Her research interests
include wireless networks and sensor networks.

Yu-Chee Tseng obtained his Ph.D. in Computer and
Information Science from the Ohio State University
in January of 1994. He is Professor (2000–preset)
and Chairman (2005–present) at the Department of
Computer Science, National Chiao-Tung University,
Taiwan. From 2006 to present, he serves as Adjunct
Chair Professor at the Chung Yuan Christian Univer-
sity. Dr. Tseng received the Outstanding Research
Award, by National Science Council, ROC, in both
2001–2002 and 2003–2005, the Best Paper Award,
by Int’l Conf. on Parallel Processing, in 2003, the

Elite I. T. Award in 2004, and the Distinguished Alumnus Award, by the
Ohio State University, in 2005. His research interests include mobile comput-
ing, wireless communication, network security, and parallel and distributed
computing. Dr. Tseng served as an Associate Editor for Telecommunication
Systems (2005–present), as an Associate Editor for IEEE Trans. on Vehicular
Technology (2005–present), and as an Associate Editor for IEEE Trans. on
Mobile Computing (2006–present).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

